A Search-based Approach for Generating Angry Birds Levels.

Lucas Ferreira
Institute of Mathematics and Computer Science
University of São Paulo
São Carlos, Brazil
Email: lucasnf@icmc.usp.br

Claudio Toledo
Institute of Mathematics and Computer Science
University of São Paulo
São Carlos, Brazil
Email: claudio@icmc.usp.br

Abstract—This paper presents a genetic algorithm (GA) for the procedural generation of levels in the Angry Birds game. The GA evaluates the levels based on a simulation which measures the elements’ movement during a period of time. The algorithm’s objective is to minimize this metric to generate stable structures. The level evaluation also considers some restrictions, leading the levels to have certain characteristics. Since there is no open source code of the game, a game clone has been developed independently of our algorithm. This implementation can be used to support experiments with procedural content generation (PCG) methods for this game type. We performed experiments in order to evaluate the expressivity of the level generator and the results showed that the proposed algorithm could generate levels with interesting stable structures.

I. INTRODUCTION

Content creation is one of the major efforts of the digital games industry [1]. The authors in [2] define game content as all aspects of the game that affect gameplay other than non-player characters (NPCs). Examples of game content are terrains, maps, levels, stories, dialogue, quests, characters, rulesets, weapons, etc.

Since games have become complex and bigger, generating content may demand plenty of time from game developers. Therefore, procedural content generation (PCG) can be used to reduce the content generation time. PCG is the automatic or semi-automatic generation of content by algorithms [3]. For example, PCG was used in the development of the Borderlands [4] game for the generation of a large set of different weapons. PCG algorithms represent a content usually as parameters or seeds [2] and, besides reducing the time spent for content generation, they can also reduce memory consumption and support personalized contents in games [3].

The memory consumption can be reduced when PCG is used online. Once the content is generated inside the game, there is no need to store it in the memory before its generation [5]. For example, Elite [6] is a game which managed to generate information about hundreds of star systems, spending few tens of kilobytes of memory. Personalized content can be created from algorithms classified as experience driven procedural content generation [7]. In this case, the algorithms usually learn a player’s experience model, which is used to predict aspects such as challenge, frustration, fun, etc.

PCG can be treated as an optimization problem [2]. In this case, a search space is defined representing the candidate contents for a given context of the game and the proposed algorithms must search for the best content. Such algorithms are classified as Search Based Procedural Content Generation (SBPCG) [2].

Although many methods are based on evolutionary algorithms, SBPCG includes all forms of heuristics and stochastic search/optimization algorithms [2]. It has been used for generating many types of game content including levels [8], weapons[9], spaceships [10] and rulesets [11]. Level generation is currently one of the most popular types of PCG [2]. Levels have been generated for different genres of games, such as racing games [12], arcade [13] and platform [14], all based on evolutionary algorithms.

Physics-based puzzle games has recently become very popular, especially in mobile devices. Some of the most popular titles are Angry Birds, Bad Piggies, Tower of Goo and Cut the Rope. Despite their popularity, to the best of the authors’ knowledge, this genre has not been deeply explored in the field of PCG. There are only a few studies devoted to content generation for the Cut the Rope game [15], [16], [17].

This genre is an interesting application for PCG, because it has several physics constraints, which must be considered in the evaluation of the quality of the generated content. Evaluating playability is another issue in this genre since this needs to be done based on a physics simulator [15].

This paper presents a level generator for the Angry Birds game based on an evolutionary algorithm which represents a level with an array of columns. The fitness function evaluates a level based on a simulation that measures how much each object has moved. The objective of the algorithm is to minimize the total amount of movement during the simulation so as to create structures which do not fall.

Several experiments focusing on the analysis of the level generator expressivity were conducted, aiming at the evaluation of its capabilities and the content space explored. Metrics, such as frequency, linearity and density were used to show the characteristics of the generated content.

The remainder of the paper is organized as follows: Section II describes the Angry Birds game and provides details about its clone implemented to run the simulations; Section III describes the evolutionary algorithm, including the level representation, the fitness function and the genetic operators; Section IV adresses the experiments and the results including...
the levels generated; finally, Section V concludes this work and presents its next steps.

II. ANGRY BIRDS

Angry birds gameplay consists in the use a slingshot to throw birds against structures composed of blocks and pigs, where the objective is to kill all the pigs. The player has a limited amount of birds to kill a certain amount of pigs. An Angry Birds level, as showed in Figure 1, is composed of birds, pigs, blocks and a slingshot, all inserted in a specific scenario, usually over a flat terrain. The game is divided by “worlds”, each one with a specific theme. Levels usually contain structures with shapes related to these themes, which makes the player feel inside these worlds.

The blocks are used to create different gameplay once they can either sustain or defend pigs. The pigs in each level should be set in a configuration so that the player can kill them using the provided birds. The player must use the blocks and the physics characteristics to kill all the pigs. The distance between the slingshot and the beginning of the blocks also influence the gameplay, because it affects the force and the angle that the player must use to throw each bird and kill the pigs.

A. Angry Birds Clone

Angry Birds is a private project developed by Rovio Entertainment [18] and there is no open source code available for the game. Thus, our own clone were implemented using the Unity engine [19] and the original art assets. Its source code is available for download via GitHub \footnote{https://github.com/lucasnfe/AngryBirdsCover}.

In our clone, the levels are described via an xml file used as the input of the game. This xml may describes one or more levels, when more than one level is described, they will be played in order. The description contains the attributes of the level simulation and the positions of all the game objects (pigs, birds and blocks).

Each level played is treated as a simulation, which may have a time limit. The levels in the original game do not have any time limit, but this feature is important for us, since we need to play and to analyze several levels in a batch. A simulation ends either when the time is over or if the player wins/looses the game. The elements of the xml and their attributes are the following:

- **Levels**: a list of levels which will be played in order.
- **AngryBirdsLevel**: an instance of a level.
- **Simulation**: the information to run the level inside the game.
 - **time**: a real number representing the amount of time (in seconds) spent by the simulation. This attribute must have a negative number to disable the time limit.
 - **timeScale**: a real number representing the scale of time. It can be used to run the simulation slower or faster.
 - **enableInput**: a boolean value to be set if the user’s input is allowed.
- **Slingshot**: the position of the slingshot in the level.
- **Birds**: a list of birds which will be placed in the level. Currently the game supports only the red birds (showed in the Figure 2)
 - **isMainBird**: A boolean value to be set if the bird can be dragged by the player.
 - **x**: An integer number representing the x coordinate in the screen (with origin in the bottom left corner).
 - **y**: An integer number representing the y coordinate in the screen (with origin in the bottom left corner).
 - **rotation**: A real number representing the rotation in degrees.
- **Pigs**: a list of pigs which will be placed in the level.
- **Blocks**: a list of blocks which will be placed in the level. The blocks have the same orientation attributes of the birds (x, y and rotation).
 - **n**: An integer number representing the type of the block.

An example of level description xml is showed in the Figure 2. In this example, the level will end after 100 seconds and it will be played in the normal velocity because it’s timeScale is equal to 1. It allows input from the user because enableInput is set to true. The other elements in the xml describe the type, position, and rotation of each object in the level.

After the simulation of each level described in the xml, the game creates another xml as output which contains simulation’s results of each level. It also contains the following information for each block:

1) **averageVelocity**: average magnitude of the velocity vector during the simulation. It is calculated by collecting the velocity vector magnitude after each 0.1 second of simulation.
2) **collisions**: the object’s collision amount in the end of the simulation.
3) **rotation**: the object’s rotation at the end of the simulation.
The Algorithm 1 describes the proposed GA. During the evaluation stage (lines 3 and 9), the current population is coded into the level description xml and the whole population is evaluated in a batch. After all simulations have been execute, the output file with the simulations results is read. This information is used by the fitness function to evaluate the individuals.

Algorithm 1: Evolutionary Algorithm structure

1. currentGeneration \leftarrow 0;
2. InitPopulation(population);
3. EvaluatePopulation(population);
4. while !stoppingCriteria() and currentGeneration < maxGeneration do
 5. SelectPopulation(matingPool, population);
 6. Crossover(matingPool);
 7. Mutation(matingPool);
 8. EvaluatePopulation(matingPool);
 9. Elitism(matingPool, population);
 10. population = matingPool;
 11. currentGeneration \leftarrow currentGeneration + 1;
5. end while

While either the stopping criterion is not satisfied or the maximum number of generations is not exceeded (lines 4 and 5), the genetic operators are applied to the current population (lines 6-8). The parents are selected (line 6) for crossover using tournament, defining a mating pool. A uniform crossover (line 7) and a mutation operator (line 8) are applied over individuals in the mating pool. The new individuals are evaluated (line 9) and an elitism (line 10) is applied so that the better individuals from the previous population are kept in the next one (line 11).

A. Individual Representation

An individual in the proposed GA represents an Angry Birds level encoded as an array of columns. Each element in a column is an elementary block, a pig or a composed block. A composed block is a predefined structure made by elementary blocks. The focus of this paper is on the generation of levels with stable structures, therefore the algorithm will evaluate only the quality of the generated structures. This means the distance between the slingshot and the blocks structure will only the quality of the generated structures. This means the distance between the slingshot and the blocks structure will only concern the stability of the generated structures.
not be taken into account by the individual representation. A total of 22 elements is used to build levels, as shown in Figure 4.

Each element is internally represented by an integer from 1 to 22. The elements 17-21 are composed blocks, the element 22 is the pig and the others are elementary blocks. Each individual’s column corresponds to a column in the level, therefore the order of the elements in an individual’s column will be the same order inside the level. Each individual’s column also has an integer value associated to it, which stands for the horizontal distance (in pixels) to the next column. This distance is calculated from the center of the current column to the center of the next column. The last column will always have this distance set to zero because there is no column after it. When placing the elements in the level, there is no vertical distance between elements of the same column.

The Figure 5 illustrates a level representation with 3 columns. The Column 1 has size 3, the Column 2 has size 6 and the Column 3 has size 2. The horizontal distances between columns are represented at the bottom of the columns. The distance from the Column 1 to the Column 2 is 148 pixels and from the Column 2 to the Column 3 is 183 pixels.

B. Initializing Population

In the initialization stage, the algorithm randomly generates individuals to form the first population. However this process is not uniformly random, because some elements affect the columns stability if they are placed either in the first position or in the middle positions of the column. We use a table to define previously the probability of an element to be placed in some position.

The Table I is an example of a probability table. The first column represents the element index and the second column represents the probability of element \(i \) to be placed in the first position of an individual column (over the level ground). The third column represents the probability of element \(i \) to be placed in the intermediary positions of an individual column. The last column refers to the probability of element \(i \) to be placed in the last position of an individual column. It is important to highlight that the sum of each column of the probability table must be 1, because the initialization process performs an stochastic selection.

The values defined in the Table I give more chance to squared blocks to be placed in initial and middle positions of the level. The triangular and circular elements (including pigs) are more likely to be placed at the top.

C. Fitness Function

To evaluate the individuals, the algorithm must create a level descriptor xml containing all the individuals from the current population. The \(x \) coordinate of the blocks starts at the center of the first column. The elements in the same column have the same \(x \) coordinate, which are based on the distance values associated with the columns. The \(y \) coordinate of an element depends on the height of the elements under it.

After the input xml has been created, the algorithm must execute the game with this xml as input. It runs all the simulations and creates an output xml similar to the one illustrated in Figure 3. This file is parsed and the simulation results are used to calculate the fitness function described by equation (1):

\[
 f_{ind} = \frac{1}{3} \left(\frac{1}{n} \sum_{i=0}^{n-1} v_i + \sqrt{(|b| - B)^2} + \frac{1}{1 + |p|} \right) \quad (1)
\]
The value $0 \leq v_i \leq 1$ is the average magnitude of the velocity vector of element i, n is the total number of elements (blocks and pigs), $|b|$ is the amount of blocks and $|p|$ is the total of pigs in the individual. The parameter B defines the desired amount of blocks and it is set by the user. The Max_b is the maximum amount of elements that a level can have. This value is determined by the maximum number of columns and lines that a level can have. For example, considering the average velocities in the Figure 3, $B = 30$ and $Max_b = 70$, the fitness function would be calculated as following:

$$f_{ind} = \frac{1}{3} \left(\frac{3.19}{15} + \frac{\sqrt{(12 - 30)^2}}{70 - 30} + \frac{1}{1 + 3} \right)$$

$$f_{ind} = \frac{1}{3} \left(0.2126 + 0.36 + 0.25 \right) = 0.2742$$

<table>
<thead>
<tr>
<th>Element</th>
<th>Ground</th>
<th>Middle</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>0.05</td>
<td>0.15</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.05</td>
<td>0.15</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>11</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>12</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>13</td>
<td>0.1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>0.1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>17</td>
<td>0.1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>0.1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>0.1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.05</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>0.05</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>0.0</td>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The proposed GA searches for levels with stable structures that minimize this fitness function. The first term of equation (1) evaluates the stability of the structures through the magnitude of the velocity vector. The second and third terms aims at the creation of B blocks and at least one pig, respectively.

The minimum value of this function is approximately zero and it is the case that all objects do not move during the simulation, the individual has exactly B blocks and more than one pig. In the other hand, the maximum value of this function is 1, this is the case when all elements have maximum average velocity, there are no pigs and the amount of blocks is equal to $Max_b - B$.

D. Crossover and Mutation

The recombination process generates two new individuals (children) by the application of an Uniform Crossover. Considering two individuals (parents) p_1 and p_2 with m and n columns respectively, the column $i \in [1, max(m,n)]$ of a new individual (child) is generated by randomly selecting a column either from p_1 or p_2 with equal probability. If the size of the two individuals are different ($m \neq n$) and assuming $m > n$, each of the $m - n$ last columns from p_1 will have 50% of chance to be included in the new individual. Otherwise ($n > m$), each of the $n - m$ last columns from p_2 will have 50% of chance to be selected.

![Parent](image1.png)
Parent 1

7	9	8
22	1	18 17 22
17	21	19
148	183	0

![Parent](image2.png)
Parent 2

1	2	8	22	17
8	9	21	4	
1	21	8		
22	2	9	19	9
20	74	128	11	0

![Child](image3.png)
Child 1

8	8	4	
22	2	12	
18	17	2	
17	21	9	
20	74	0	0

![Child](image4.png)
Child 2

7	9	
8	22	
1	9	
18	17	2
17	21	9
148	183	0

The Figure 6 illustrates an example of a crossover operation. The first and second columns of Child 1 came from the first and second columns of the Parent 2. The third column of Child 1 is selected from the third column of Parent 2, while the fourth column of Child 1 is selected from the fifth column of Parent 2. In this case, the crossover randomly decided not to select the fourth column from Parent 2. The Child 2 was created from the two first columns of Parent 1 and the third column of Parent 2.

A mutation may be applied over each new individual generated after crossover. The mutation randomly changes each element of the individual with a certain probability. If the element selected for mutation is not distance information, the mutation changes the type of this element by generating a new integer value $1 \leq r \leq 122$ based on the probability table. In this case, the probability table is followed so as to avoid the insertion of a wrong element into a determined column position. If the element selected for mutation is distance information, the mutation replaces it by a random integer within the possible distance range. The Figure 7 shows an example of mutation.

In this example the mutation changed the first element of the first column from 22 to 10 and the last element of the second column from 8 to 1. The distance value in the third column was mutated from 0 to 47 and the last element of the last column was changed from 4 to 21.
IV. EXPERIMENTS AND RESULTS

The levels generated by the proposed GA were evaluated through simulations with the game clone described in Section II. An important parameter in the simulation is the time limit assigned to each individual, since it directly affects the first term of the proposed fitness function. A short simulation time may not be sufficient to evaluate if the objects will start to fall. In this case, the first term of equation (1) can be zero, but it does not mean the elements of this individual are stable structures. On the other hand, a long simulation time is not interesting because, after a certain period, all the elements will be resting. In this case, the first term of equation (1) can also be zero, but it does not mean the elements of this individual remained stable during the whole simulation.

To properly define a simulation time value, a large population with 6000 individuals was instantiated and simulations with time limits from 1 to 20 seconds were executed to determine the fitness values. The result of this experiment is shown in Figure 8.

The results showed the average and standard deviation of the fitness values for the 6000 individuals. The values decreased in a similar proportion when the simulation time increased from 1 to 8 seconds. When the simulation time is longer than 9 seconds, the standard deviation started to increase and the average fitness value remained around 0.08. After 8 seconds, as the simulation time increases, more elements will enter in the rest state. Therefore, measuring the velocity after 8 seconds is not interesting for the proposed fitness function, once the number of objects in the rest state will not allow to evaluate properly those which were moving in the beginning of the simulation. Eight seconds were set as the time limit for the simulation in all experiments reported below.

The parameters related to the GA were set empirically, i.e. the population size was 200 individuals, the maximum number of generations was 1000, the tournament size was 2, the mutation rate was 5% and the crossover rate was 95%. Some other constant values were used in the generation of the levels:

- Amount of birds: 3
- Positions of birds: (140, 210), (200, 100), (260, 100)
- Slingshot position: (150, 160)
- Position of the first column of the blocks: (500, 100)
- Max horizontal distances between columns: 300
- Max number of columns in a level: 7
- Max number of rows in a level: 7

Since the max amount of columns and rows is 7, the value of Maxb is 49. The probability table to initialize and mutate the individuals is the same defined in the Table I.

A. Expressivity Analysis

As described in [15], the expressivity of the generator is the space of all levels it can generate and a metric that indicates the generator strengths and weaknesses. This metric can be calculated by generating a large number of levels and evaluating their meaningful aspects.

In the present paper, three measures are defined based on the metrics used in [20] and [15]: frequency, linearity and density. Frequency evaluates the number of times a block occurs in the level generated. Linearity provides the average height taking into account the height of all columns within the level. Density measures the columns distribution among the level’s area, considering the distance between them.

As mentioned in Section III, the maximum amount of blocks B is a parameter defined by the user and the computational tests conducted will take into account three different values for B: 10, 20 and 30. For each value of B, the GA
was executed 200 times and the best level from each run was evaluated in terms of frequency, linearity and density.

The first experiment evaluates the levels with $B = 10$, the Figure 9 shows an example of a final level generated within 200 executions. The GA could create a level with exact 10 blocks, satisfying the constraints related to blocks amount. It also included two pigs in the first two columns.

The Figure 10 shows the average and standard deviation of each block frequency, taking into account the best level generated in each of the 200 executions of the GA. The results showed the average of pigs (element 22) is 1.6 and its standard deviation is approximately 0.7. The pigs have the bigger average in this experiments, this can be related to the impact of a pig in the fitness when the B is small. In this case, the insertion of a pig into the level may significantly reduce the fitness of the individual. Beyond the pigs, the most used are blocks 1, 8, 12 and 14. These values show that the best levels generated for $B = 10$ also match the probability values defined in Table I.

The Figure 11 shows one of the levels generated with $B = 20$. The amount of blocks in the level is exactly 20, which means that the generator could satisfy also this user constraint. The blocks frequency is presented in Figure 12 for the best 200 levels generated by the GA. These levels have on average two pigs (element 22) with standard deviation around 0.6, which means the levels generated hardly had zero pigs. Blocks 1, 3, 9, and 14 show a higher frequency as expected, taking into account the values of the blocks in the probability table.

The Figure 12 shows an example of the best level generated with $B = 30$ blocks. The level also has the amount of blocks defined by the user. The Figure 14 shows the frequency metric for this case where the amount of pigs is larger than 2.

The values of frequency showed the blocks that occurred more frequently in the best levels, but it did not give an idea about their orientation. This can be obtained combining the information provided by linearity and density metrics. Table II compares these metrics for the three defined level types, in which the average (μ) and standard deviation (σ) values for the best 200 levels generated are depicted.

The linearity values have both average (μ) and standard deviation (σ) for the column height values increasing when the amount of blocks increase. The σ values show that the levels does not have structures with similar heights, indicating a variation in the arrangement of structures generated.

The density of the level refers to how sparse are the columns in the level. A low density indicates the columns are very separated and a high density indicates they are very close to each other. In the three experiments, the density showed values around 0.5, which indicates the columns are arranged in a balanced way, i.e. they are disposed through the whole level without large spaces between them.
with an agent controlled by the computer.

REFERENCES